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Abstract

The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned
Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate
social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of
Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a
dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction
can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to
yield behavioral intention, i.e., intention is dynamically constructed from both an individual’s pre-existing belief structure
and the beliefs of others in the individual’s social context. In a third simulation, we illustrate the predictive ability of the
model with respect to empirically derived behavioral intention. As the first known computational model of health behavior,
it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our
approach may inform the development of population-level agent-based models of health behavior that aim to incorporate
psychological theory into models of population dynamics.
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Introduction

Some of the most successful models of individuals’ health

behavior are variants of the reasoned action approach. This

success is due to: a moderate degree of variance in behavior can be

accounted for by its constructs [1,2,3]; it applies across several key

health behaviors to include drinking [4], exercise [5], substance

use [6], health screening [7], and sexual risk [8]; and, interventions

that change its constructs can, in fact, generate change in

behaviors (see [9] for a review).

The Theory of Reasoned Action (TRA) [10] is the embodiment

of the reasoned action approach (also see the Theory of Planned

Behavior [11], and the Integrated Model, [12]). Here, behaviors

are driven directly by intentions towards a behavior. Intentions are

driven directly by attitudes and perceived norms related to the

behavior. Attitudes and perceived norms are formed from beliefs.

For example, an attitude towards performing a behavior is

represented in the equation below, where (b) is belief strength (the

subjective probability that the outcome of a behavior will come

true), (e) is an evaluation of the outcome associated with the

behavior (the valence) and, the summation sign captures the

aggregation across beliefs:

Attitude!
Xn

i~1

biei

Beliefs have a special status in that they are foundational in

forming attitudes and perceived norms and are the only inroad to

changing attitudes, perceived norms and, ultimately, intention

[13].

Although the TRA was not designed to capture changes in

beliefs, research on the application of the TRA has provided

evidence that beliefs can change in systematic ways (e.g., the

desirability of an outcome related to a behavior), which can, in

turn, change attitudes and intention [14]. In short, the TRA

provides a psychologically grounded model of the belief –

intention link, but without much theoretical attention to how

beliefs are formed or changed, except to say that intentions and

attitudes can change through changes in beliefs. Thus, the TRA

remains a relatively static theory of health behavior and behavioral

change.

A completely different approach to understanding health

behavior comes from the field of social networks. This work posits

that the health behavior of individuals is dynamic and sensitive to

social context. In short, people affect others’ behavior. This idea is
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well supported empirically [15,16] and is implicated in several

areas of health behavior, e.g.: smoking cessation [17], mental

health [18], emotions [19], suicidal ideation [20], drug use [21],

and obesity [22]. The social network literature, however, does not

address the possible psychological mechanisms involved in the

spreading of behavior across social network ties.

In this article, we put forth an extension of the TRA that can

accommodate the dynamic nature of health behaviors suggested by

the social networks literature and that is also captured, to some

extent, by the evidence of intention change in the TRA. To this end,

we turn to methods and theory from both personality theory and the

more recent literature on attitudes for which there is substantial

work on the dynamics of attitude formation and change.

The recent advances in the basic theory of attitude formation

and change have integrated theory from cognitive science into a

dynamic theory of attitude representation and process [23,24].

This work, using a computational theory called constraint

satisfaction, conceptualizes an attitude as a distributed memory

representation across a set of interconnected beliefs (constraint

satisfaction is described in detail below). By this account, an

attitude is a state in a dynamic system that is reconstructed from a

set of inputs. The inputs, which represent the immediate social

context, can activate beliefs in memory. The interconnections

between beliefs represent more long-term attitude structure–these

are learned slowly though exposure to many social contexts over

time. Personality theory has addressed a similar set of issues, using

constraint satisfaction, relating to how one’s behavior is influenced

by social contexts and situations [25,26,27,28]. Here, behavior is

considered in tandem with a person’s situational context. To

explain behavior one must know not only the structure of the

personality but also the contexts in which behavior operates.

From these two related literatures, the major import for health

behavior is that attitudes and behavior are at once context-

sensitive (based on the cues and inputs in the environment) and

stable (due to the learned interconnections among the beliefs and

cognitions in the system). This, to our mind, fills in the theoretical

lacuna with respect to the dynamics of health behavior.

The model of the TRA we put forth here is directly concerned

with understanding the dynamics of intention formation and

change. Our model affords intention formation and change that is

at once sensitive to the immediate context and also stable across a

set of similar contexts–i.e., intention is dynamically constructed

from an individual’s learned pre-existing belief structure and the

beliefs of others in the individual’s social context Specifically, our

model considers intention as a distributed memory representation

across a set of beliefs. To borrow from Conrey and Smith [23]:

Intention is a state, not a thing.

The Theory of Reasoned Action as Parallel Constraint
Satisfaction

We’ve re-conceptualized the Theory of Reasoned Action as a

parallel constraint satisfaction system. In the abstract, this type of

system represents generic psychological constructs (e.g., features,

beliefs, thoughts, units of memory) as set of processing units each

of which can vary in its activation level. Each unit represents a

hypothesis about whether or not, or how strongly, a psychological

construct is activated. Constraint satisfaction refers, in part, to the

fact that each unit’s activation level is constrained by the activation

levels of other units. For example, if unit X is expected to be active

when unit Y is active, the connection between them should be

excitatory. In the same way, if the constraint is such that unit X is

not expected to be active when unit Y is active, then there should

be an inhibitory connection between them. With no expectation,

the connection should be neutral, which effectively means there is

no constraint between units X and Y. External inputs to the system

(e.g., a social situation or context) have similar effects. If a relevant

feature is present in the external input, it will constrain a unit’s

activation to be on. In general, for each new input to the system, a

constraint satisfaction network settles into a state–via a relaxation

procedure–in which the constraints are well satisfied, at a local

level. This mechanism has proven successful in both cognitive

science and personality and social psychology [29,30].

Figure 1 illustrates our re-conceptualization of the TRA. In our

model, beliefs are the constituents of what we call the intention

system. To capture valence, each belief is split between two units;

one represents positive valence (to intend) and the other represents

negative valence (to not intend); there is an inhibitory connection

between them, i.e., each valence of a belief constrains the other

valence of the same belief to be less active.

Intention, in TRA parlance, is represented by the pattern of

activation across the belief units. It is useful to organize the pattern

of activation as two separate banks of intention units as depicted in

Figure 1; the intend bank represents intending to do the behavior

in question (positive valences of the beliefs, in red), the not intend

bank represents not intending to do the behavior (the negative

valences, in gray). Thus, at any point in time, the intention of the

system is roughly in one of three states: intend (on average the

intend bank is more active), not intend (the compliment of intend),

ambivalent (where both banks are nearly equally active).

By design, the constraints among beliefs are not pre-specified

because there is no a priori reason to do so. These constraints

capture what is learned by the system about health behavior from

past social contexts or situations through modification of the

strength and sign (inhibitory or excitatory) of the constraints. We

call these internal processing constraints to capture the idea that what is

learned represents the stable internal psychological structure of a

person–a pre-existing belief structure for any social context that is

encountered. We assume learning about health behavior occurs

over the long-term from exposure to social contexts such as

cultural sources, media outlets, family, and friends.

An external input to the system represents constraints on the

units from the immediate social context–i.e. others’ beliefs activate

the belief units in the system. Inputs are dictated to follow the same

valence structure that is present in the model. Thus, if the input

showed evidence that the positive valence of Belief 1 was active in

the social context, the input would constrain the positive valence to

be active and provide no constraint on the negative valence of

Belief 1. We call these external processing constraints to capture the

idea that the immediate, short-term social context can constrain

the activation levels of the system at any time-point. Furthermore,

the degree to which the external inputs constrain the units is

controlled by a clamping factor. Conceptually, clamping repre-

sents the weight a person gives to others’ beliefs–stronger clamping

reflects more weight to others’ beliefs.

The external inputs to the system play a role in both the

learning of internal processing constraints and the immediate

external constraints on the system. As we will explain below,

learning is not always ‘‘on’’ in the system. When it is ‘‘off’’ the

external constraints only play a role in the relaxation procedure to

determine the current state of the system; when ‘‘on’’ the external

constraints have the additional function of potentially leading to a

modification of the internal processing constraints.

Conceptual Overview of System Simulations
The general design of our simulations was to first generate a set

of internal constraints (via learning) for a specific, definable context

and then to test how the model behaved when embedded in

several equally specific and definable external contexts (defined by

Reasoned Action as Constraint Satisfaction
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Figure 1. The Theory of Reasoned Action as a constraint satisfaction system. Each belief is split among two processing units; one to
capture positive valence (red circles) and the other to capture negative valence (grey circles). The numbers within each unit index the belief (1 = belief
one…14 = belief fourteen). Inter-bank connections: The constraint between valence units within a belief is always inhibitory (see the blue connecting
lines between units). There are no constraints between units that are both a different belief and different valence. Intra-bank connections: Within each
valence bank, the beliefs are fully connected (i.e., each belief can constrain all other beliefs of the same valence (see the curved green arrows next to
each valence bank). These constraints, called internal processing constraints, are modifiable, through learning, from a set of input patterns which
represent past social context/situations regarding others’ beliefs. Dynamics: External input to the system (not shown here) directly activates the belief
units and represents others’ beliefs (called external processing constraints). The state of the system at any time point is a function of both the internal
and external processing constraints; a constraint satisfaction algorithm dictates the specific form of this function.
doi:10.1371/journal.pone.0062490.g001
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a set of input patterns). The degree to which (strength of) the

external context impinged on the system (the clamping factor) was

systematically varied within the simulations.

In the first two simulations, the design attempted to pit learned

aspects of behavioral intention against both the nature of and

strength of the immediate social context with respect to the same

behavioral intention. The nature of short-term social contexts is an

analog for exposure to what other beliefs people hold; clamp

strength is an analog for how much influence or weight a person

gives to the short term context.

In the third simulation, the design attempted to show that our

conceptualization of intention, as a pattern of activation in the

system, actually mapped onto empirical measures of intention.

Thus, we tested the predictive validity of our model against

participants’ reported intention.

Methods

Ethics Statement
The human subjects data was collected under approval from the

Institutional Review Board of the University of Washington.

Written informed consent was obtained from all parents of the

participants (all were students in school) prior to Year I and Year

IV of the study. Furthermore, written assent was obtained from all

participants every year of the study. The data used in this

manuscript was striped of all identifying information and we did

not have any access to the coding scheme between the de-

identified data and the larger dataset. Thus, there was no potential

way for us to link the individual data points in the data we used

with the actual participants.

Participants & Measures
We used self-report survey data specifically designed to measure

the TRA with respect to sexual behavior in adolescents to

construct a portion of the inputs for our simulations. These data

were part of a seven year longitudinal in-school survey from 1992

to 1998 [31]. The survey sampling methods, demographics, and

questionnaire are described in the online Supporting Information

(see File S1).

The TRA measures were included in year six of the survey

(N = 749, 10th–12th grades); we used the outcome and normative

belief measures for all simulations. The outcome beliefs captured

the following concepts (framed by the question ‘‘Do you think

having sexual intercourse will make you…’’): feel good, be more

popular, feel loved, feel experienced, get an STD, get pregnant,

regret it later, get HIV, and have emotional stress. These beliefs

were defined as the product of the likelihood of occurrence of the

outcome (from 1 to 4 where large means more likely) and the

evaluation of the outcome if it occurred. The evaluative

component captured the valence of the belief (ranging from

22 = very bad, 2 = very good, with a zero midpoint representing

neutral). Normative beliefs were defined as the product of the

respondent’s perception of a referent’s attitude towards he/she

having sexual intercourse and the respondent’s motivation to

comply with said referent (the latter ranged from 1 to 4 where

large means more likely to comply). The referents were parents,

best friend, other friends, favorite teacher, closest sibling. The

valence of normative beliefs was captured by the referent’s

attitude, ranging from 22 = referent does not think its ok for

respondent to have sex to 2 = referent thinks its ok (with a zero

midpoint). Thus, the resultant 14 beliefs (nine outcome and five

normative) were measured on an integer scale from 28 to 8

(including a zero mid-point); negative indicated negative valence,

positive indicated positive valence; magnitude was captured by the

absolute value of the scale. See the online Supporting Information

(File S1) for details on and examples of these measures.

In one of the simulations (Simulation III) we also used a direct

measure of intention (Empirical Intention): ‘‘When you are in

[next grade], do you think you will have sexual intercourse?’’

[1 = NO!, 2 = no, 3 = yes, 4 = YES!].

We isolated the following sub-populations of the sample based

on gender, school grade (10th or 12th), and virginity status (virgin

or not virgin): Female, 10th grade, virgin, N = 105; female, 12th

grade, virgin, N = 66; and female, 12th grade, not virgin, N = 73.

Model Specification
Figure 1 represents the general structure of our model–fourteen

beliefs separated into 28 units. This is an auto-associator neural

network [32]. Not shown in Figure 1 is the existence of two

separate banks of ten hidden units each of which were fully

projected to and from the respective intention bank (i.e., bi-

directional connections to the respective bank). Units were never

self-connected; all were connected to a bias unit. The belief units

functioned as both input and output units. We implemented a

modified logistic activation function across all units. For every

input to the system, the units were updated synchronously for nine

cycles. A small portion of activation values at the end of each

processing cycle for every input pattern was carried over to the

initial input for the next input pattern. Activation of the units in

the model were restricted to (0, 1).

Nature of input patterns. The input patterns used both to

generate the internal constraints and to run simulations were of

identical structure. The input patterns consisted of a binary vector

of length 14 and its bitwise compliment (total length is 28). The

first 14 bits on the vector represented the inputs to the intend

bank; the others represented the not intend bank.

We constructed six types of input sets. Set P25, was defined by a

set of input patterns that, on average, had a probability of.25 for

representing the positive valence of each belief (independently for

each belief). This set was designed to represent the context in

which there was a relatively strong inclination for not intending to

do the health behavior. To represent the contexts of a neutral and

a strong inclination for intending to do the health behavior, we

constructed Set P50 and Set P75–defined exactly as P25, but

with.50 and.75 probabilities in place of.25.

The other three sets were derived from the empirical dataset

described under Participants. Sets F10V (Female, 10th Grade,

Virgins), F12V (Female, 12th Grade Virgins), and F12NV (Female,

12th Grade Non-Virgins) were transformed from the empirical

data on its original scale to fit the structure of the model in a way

that preserved the belief valence structure. The original scale for

both outcome and normative beliefs was from 28 to 8, including a

midpoint of zero. We transformed this scale in two steps at the

individual participant level. First, we transformed the original scale

to a binary scale by assigning negative values to 0, positive to 1 and

zero probabilistically to 0 or 1 (with a probability of.5 to assign as

1). Then we defined the negative valence of the input structure as

the logical compliment to the positive valence. In short, we

mapped the original scale onto the positive/negative valence

structure of the input pattern in a way that preserved the original

valence but not magnitude of the scale. Each participant was

represented as a single example in her respective input set.

Generation of internal processing constraints. The

internal processing constraints were of two kinds: 1) the connection

weights between intra-belief valences, and 2) the connection

weights between the belief units within each valence bank. The

former were fixed at 2.20 to provide an inhibitory constraint

between valences within each belief. For the latter, we generated

Reasoned Action as Constraint Satisfaction
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two sets of internal constraints. The first, using the P25 input set,

represented the case in which the model learned from contexts

with a strong bias for not intending to do the health behavior

(called the P25 weight set). The second, using the F10V input set,

was a context in which the model learned the belief structure of

Female, 10th grade virgins (called the F10V weight set).

To train the connection weights for a given set of input patterns,

we trained the system in batch mode for 200 epochs using the

generalized delta-rule. Within each epoch, the error was computed

for the 7–9th processing cycle of each input pattern. Clamp

strength was fixed at 0.50 (the connection weight from each

external input to the system units). We used a single input set of 50

input patterns to generate the connection weights for the P25

weight set. For the F10V weight set, we trained the model using

the full data set for female, 10th grade virgins (N = 105).

Structure of the empirical input sets. Figure 2 represents

the F10V, F12V and F12NV input sets separately, showing the

proportion of respondents that had a positive and negative valence

for each of the 14 TRA constructs. By considering these

proportions as frequencies in the input to the system, we can

understand to a rough approximation what the system learned

when exposed to the F10V input set. In particular it learned: 1)

inhibitory constraints between constructs where one is frequent

and the other is not, 2) excitatory constraints between constructs

where both are frequent, and 3) no constraint between constructs

that are both infrequent. For, example, it should learn an

inhibitory constraint between the ‘‘feel good’’ construct and the

‘‘get an STD’’ construct in the intend bank of units in the system.

At a more aggregate level, we can understand what the system

learned by illustrating the average exposure to valence from the

inputs. The mean valence, across beliefs, was 0.29 positive for the

F10V input set–it leaned heavily towards the negative valence (to

not intend). For comparison, this statistic was 0.36 and 0.42 for the

F12V and F12NV input sets, respectively, indicating an increase in

positive beliefs about sexual behavior from 10th to 12th grade and

between 12th grade virgins and non-virgins.

We describe the structure of the input sets in Figure 2 as a way

to understand what might be learned by the neural network

model. An alternative way to understand this would be to analyze

the connection weight matrix directly. Without hidden units, the

weight structure would be relatively straight-forward to analyze.

However, due to the number of hidden units in our model, such an

analysis would not be fruitful.

Nature of external constraints during simula-

tions. External constraints were the input patterns presented

to the system during the simulation phase (always after the internal

constraints were generated; learning was not allowed during

simulation). For Simulations I and II, the input patterns were

scaled by the clamping factor (2-levels,.10 and.50, called weak and

strong clamping conditions, respectively). For Simulation III, only

the strong clamping condition was used.

Simulations
Simulation I. This simulation used the P25 weight set

simulated under input sets P25, P50 and P75 (separately, for a

set of three input conditions). The clamping factor was varied

across the two levels describe above. In short, keeping the internal

constraints constant at P25, Simulation I used a 3 (input set) X 2

(clamping factor) factorial design.

Simulation II. This simulation used the F10V weight set

simulated under input sets F10V, F12V, F12NV, P50 and P75.

The clamping factor was varied as in Simulation I, thus this was a

5 (input set) X 2 (clamping factor) factorial design.

Simulation method for I and II. For each condition in the

simulations, 30 runs were conducted (a run is analogous to an

individual person in an experimental setting). Each run consisted

of ten epochs of the same 50 input patterns (totaling 500 exposures

to inputs). The input patterns across runs were different. Data was

collected on the 9th processing cycle for each input pattern (500

data points per run/per condition). Learning was blocked during

all simulations.

The input patterns across runs were different for each

simulation within a condition. For Simulation I, this was

accomplished by simply generating a random set of 50 inputs

for each run. For Simulation II, this was accomplished by

sampling 50 times (without replacement) from the appropriate

input set to create the input patters for each run. For example, for

run #1 under the F12V input condition, we sampled the 66

respondents in the empirical sample of Female, 12th grade virgins

50 times without replacement to generate the input patterns for

this run.

Simulation III. This simulation was different in nature

compared to Simulations I and II. The F10V weight set was

simulated under the F10V input set, as in simulation II, with a

clamping factor of 0.50. However, the simulation consisted of only

one run and one epoch per run. That is, we presented the system

with 105 separate input patterns only once. Each of the 105 input

patterns represented one of the 105 respondents in the F10V

subset of the empirical data. Data was collected on the 9th

processing cycle for each input pattern, resulting in 105 data points

for the simulation, each of which represented the intention formed

given the input. As in Simulations I and II, learning was blocked

during the simulation.

Results and Discussion

For each simulation condition in Simulation I and II we present

the mean activation of the positive and negative valence banks

across the 500 input patterns and 30 runs per condition (1500 data

points per mean).

Simulation I
Figure 3 shows the mean activation for each valence bank. The

green dashed-horizontal lines on the y-axis demarcate mean

activation levels of 0.25, 0.50, and 0.75 to capture the predicted

mean activation values of the valence banks, given that the

external constraints dominated the behavior of the system–e.g., for

the P25 condition the mean activations should be around 0.25 and

0.75 for the intend and not intend banks, respectively, if the

external constraints dominate; for the P50, 0.50 for both banks; for

the P75 condition, the reverse of the P25 condition. Thus, the

difference between the dashed horizontal lines and the model

output illustrates the extent to which the internal constraints

affected the state of the intention system.

Figure 3a shows the results for Simulation I under strong

external clamping. For the P25 input set, the mean activations of

the intend and not intend banks approximated what was predicted

if the external constraints were driving the system. Under this

condition, the input patterns were highly similar to those used to

generate the internal constraints (i.e., the system learned from

contexts that strongly favored not intending). Thus, it is difficult to

infer the extent to which the system behavior was driven by either

the internal or external constraints; the P50 and P75 input sets

provided a better test. For these two conditions, the mean bank

activations closely matched what would be expected if the internal

constraints had a minimal effect on system behavior. In short,

under strong external clamping the external constraints (i.e., the

Reasoned Action as Constraint Satisfaction
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short-term social context representing others’ beliefs) dominated

the behavior of the intention system.

Figure 3b shows the weak clamping condition. The P25 input

set shows that, even under weak clamping, the inputs still had a

strong effect on the system. However, the P50 condition indicates

that the internal constraints also had an effect on system behavior.

The lower activation for the intend bank compared to the not

intend bank mapped onto the bias of negative valence (not intend)

inherent in the internal constraints. The P75 condition provides

further support that the internal constraints played a role in system

behavior. Although the intend bank was much more activated

Figure 2. The valence structure in the empirical input sets used to generate the internal processing constraints for Simulation II.
Each horizontal line represents the proportion of respondents (in the respective input set) that had a positive or negative valence (the proportion
negative is, by definition, 1 minus the proportion positive). Black represents the F10V input set; red and green, F12V and F12NV, respectively. The
proportion positive is captured from the zero-midpoint on the x-axis towards the left (see the dotted black vertical line); negative is to the right.
doi:10.1371/journal.pone.0062490.g002
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than the not intend bank, its activation was much less than the not

intend bank in the P25 condition.

In sum, Simulation I suggests that both the internal and external

constraints can constrain system behavior– the internal constraints

do so only with weak clamping. That is, both the pre-existing

learned belief structure and others’ beliefs in the immediate social

context were implicated in intention formation.

Simulation II
Simulation I demonstrated that the system behavior was

sensitive to both the internal and external constraints (i.e., learned

aspects and short-term social context, respectively). In Simulation

II, we tested our theoretical model in a more realistic context.

Figure 4 has the same structure as Figure 3. For the strong

clamping condition, it is clear that the F10V input set strongly

activated the system. This was expected because the F10V input

set was used to generate the internal constraints. The F12V and

F12NV input sets exhibited an increase in the activation of the

intend bank and a parallel decrease in the not intend bank,

attributable to the increase in positive valance represented in these

input sets. Thus, the system was sensitive to the external

constraints. However, these input sets do not provide much

insight into the degree to which the internal constraints affected

behavior. To this end, we presented the P50 and P75 input sets to

the system. The P50 input set shows that the system was sensitive

to both the internal and external constraints. Both banks were

activated less than expected (0.50) and the intend bank was

Figure 3. The results from Simulation I. The x-axis shows the three input set conditions: P25, P50, and P75. The y-axis represents the mean
activation of each valence bank (red = positive, to intend; grey = negative, to not intend). The green dashed-horizontal lines indicate mean activation
levels of 0.25, 0.50, and 0.75. The error bars show the standard deviation across 30 runs of each input set X clamping factor condition (using n = 30 in
the denominator). Panel A shows the strong clamping condition; Panel B shows weak clamping.
doi:10.1371/journal.pone.0062490.g003
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activated less than the not intend bank (capturing the bias inherent

in the learned internal constraints). The P75 input set further

supports the findings from the P50 condition. The intend bank was

much less activated than the expected value of 0.75. In short,

under strong clamping, the system showed sensitivity to both the

internal and external constraints. This contrasts with the results of

Simulation I in which under strong clamping the system did not

show much sensitivity to the internal constraints.

The results under weak clamping generally echoed those under

strong clamping; the internal and external constraints both played

a role in system behavior. However, this condition revealed a

further property of the system. The P50 condition showed weaker

activation of the intend bank compared to the F10V condition.

This suggests that there may have been competition among the

units in the intend bank (inhibitory and excitatory constraints

cancel out one another), which accords with the structure of the

inputs that generated the internal constraints (See Figure 2).

Figure 2 illustrates that there should be more inhibitory

connections among the units in the intend bank compared to

the not intend bank. This was not the case for Simulation I

because there was not as much inherent structure in the inputs.

The comparison between the weak and strong clamping condi-

tions reveals a related point. When comparing the weak to strong

clamping, most of the change in activation is exhibited from an

increase in the intend bank activation. This may also stem from

competition among the units in the intend bank.

Simulation III
Simulation III was designed to test how well the model could

predict intention in the empirical data set, using the F10V weights

Figure 4. The results from Simulation II. The x-axis shows the three input set conditions: F10V, F12V, F12NV, P50, and P75. The y-axis represents
the mean activation of each valence bank (red = positive, to intend; grey = negative, to not intend). The green dashed-horizontal lines indicate mean
activation levels of 0.25, 0.50, and 0.75. The error bars show the standard deviation across 30 runs of each input set X clamping factor condition (using
n = 30 in the denominator). Panel A shows the strong clamping condition; Panel B shows weak clamping.
doi:10.1371/journal.pone.0062490.g004
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and input set. In short, the simulation produced an intention score

(called Model Intention) for each of the 105 female 10th grade

virgins in the F10V input set. These were compared directly to the

empirical measure of intention, called Empirical Intention

(described under Participants & Measures). In short, this provides

a way to compare intention as defined in the model with intention

as defined in the Theory of Reasoned Action.

The data for this simulation was not aggregated as in Simulation

I and II. For each of the 105 input patterns tested in Simulation

III, we computed an intention score equal to the mean of the

intend bank minus the mean of the not intend bank. The intention

score had a theoretical range from negative one to one and was

continuous in nature; negative values represented not intend;

positive values, intend. This measure was characterized statistically

as follows: M = 20.413, SD = 0.181, range = (20.924, 0.086).

From this measure, we constructed a four-level categorical variable

of intention, called Model Intention, using the following cut-points:

(21, 20.5] = 1, (20.5, 0] = 2, (0, 0.5] = 3, and (0.5 to 1) = 4. The

values of Model Intention were designed to be directly

equivalent to the same values of Empirical Intention such that

1 = (NO!), 2 = (no), 3 = (yes), 4 = (YES!).

Table 1 shows the cross-tabulation of Model Intention with

Empirical Intention. There was a reasonable correspondence

between Model and Empirical Intention. Using Fisher’s Exact

Test, the probability of sampling this cross-tabulation, given the

marginals, was equal to 0.0004355; in other words, there was a

significant relation between the two intention measures. Further-

more, Model Intention miss-matched most for the Empirical

Intention levels one and three. We conducted further analysis to test

whether slightly shifting the cut-points used to construct Model

Intention would improve the correspondence between the two

intention measures. This was not possible. Our analysis indicated

that there were 27 input patterns at Empirical Intention levels one

and two between a very narrow range of the model intention score

(in continuous form); specifically, between the values of 20.422 and

20.420. Among these input patterns, however, there was no cut-

point for constructing Model Intention that increased the corre-

spondence between Model and Empirical Intention.

Table 2 shows the mean value of the model intention score (the

continuous measure) for each of the four levels of Empirical

Intention. Table 3 shows the model intention score (continuous)

regressed onto Empirical Intention. Taken together, these two

tables suggest a positive linear relation between the model

intention score and Empirical Intention.

Conclusions

The main findings of our modeling effort were twofold: First,

Simulations I and II showed that past experience biased the

behavior of the system towards an activation state that reflected

the internal processing constraints. This was qualified by both the

level of clamping (the stronger the clamp strength, the weaker the

effect of the internal processing bias) and the structure of the inputs

that defined the internal constraints (more structure in the internal

constraints results in stronger bias, e.g. Simulation II compared to

Simulation I). In terms of health behavior, this implies that the

immediate social context (others’ beliefs), although potentially

influential, may be systematically constrained by both the weight a

person gives to others’ beliefs (clamping) and a person’s pre-

existing belief structure (due to learning). This property embodies

the central notion of constraint satisfaction–simultaneous mitiga-

tion of constraints from multiple sources.

Second, the system’s intention state was predictive of the actual,

empirically measured intention scores, as shown in Simulation III.

This occurred despite the fact that the inputs for the simulation

only captured the valence structure and not the strength of the

beliefs (see above regarding how we transformed the empirical

data into inputs). And, we used a very simple algorithm to

construct Model Intention–subtract negative from positive valence

and cut into equally spaced quartiles. The explanation for this

predictive power is straightforward. The model learned to

represent well the inputs that were presented to it during the

simulation. (Remember, the inputs for training of the F10V weight

set were identical to the inputs used in Simulation III.) So, upon

presentation of an input, it captured well the belief structure

which, for the empirical data used in the simulation, correlated

with the empirical measurement of intention.

An Extension of the Theory of Reasoned Action
Is our model really an extension of the TRA? We argue yes for

three reasons. First, both our model and the TRA fall under the

rubric of the long-standing expectancy-value (EV) model (see [33]

for historical review)–in our model and in the TRA, intention is a

function the belief expectation (probability of an outcome of a

behavior) and the valuation (valence) across a set of beliefs.

Table 1. Crosstabulation of the categorical neural network
intention measure by the empiricial data set for the female
10th grade virgins (N = 105).

Intention Categories in Neural Network

Empirical Intention 1 2 3 4

1 (NO) 23 27 0 0

2 (no) 10 26 0 0

3 (yes) 0 17 1 0

4 (YES) 0 1 0 0

doi:10.1371/journal.pone.0062490.t001

Table 2. Mean value of model intention score (continuous)
for each level of Empirical Intention.

Empirical Intention Mean SE N

1 (NO) 20.50 0.02 50

2 (no) 20.39 0.03 36

3 (yes) 20.22 0.03 18

4 (YES) 20.29 – 1

doi:10.1371/journal.pone.0062490.t002

Table 3. Regression of model intention score (continuous)
onto Empirical Intention (dummy-coded).

Empirical Intention* Coeff. SE p, x

Intercept 20.50 0.02 0.001

2 (no) 0.10 0.03 0.01

3 (yes) 0.27 0.04 0.001

4 (YES) 0.21 0.16 ns

Notes: *reference category was intention = 1 (NO); Adj. R-sq = 0.28; omnibus F
(3, 101) = 14.39, p,.001.
doi:10.1371/journal.pone.0062490.t003
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Second, our model uses the same constructs and measures, but just

defines behavioral intention in a different way. Third, as an

extension, our model is simply a computational implementation of

the TRA. This is an accepted approach to theory development in

social psychology [34].

What is gained by virtue of a computational instantiation of the

TRA? The primary advance comes from the re-conceptualization

of intention. By our theory, intention is a state that arises from

constraint satisfaction–a highly non-linear process involving

internal and external processing constraints. Intention formation

is generated on the fly, dynamically, from the interaction between

current social situations and past learning. In other words,

dynamics are naturally situated into health behavior theory via

constraint satisfaction.

The second advance centers on learning. The TRA is silent with

respect to the explicit learning mechanisms that generate a

person’s belief structure. However, it is self-evident that both the

belief strength (the subjective probability that the belief will come

true) and the expectation of the outcome of the belief (the belief

valence) must be learned. By our theory, learning operates through

changes in the constraints among the beliefs and captures the

statistics of exposure to others’ beliefs. This implies that learning

captures the distribution of and the higher-order associations

among beliefs inherent in the past social experience. It is not clear

to what extent this contradicts the TRA because of the dearth of

work on learning with respect to it.

The third advance is that in our model the effects of past

experience on health behavior, via learning, are considered

separate from the effects of direct social influence–separate but

fully interdependent as dictated by the constraint satisfaction

mechanism. In contrast, although the exact mechanisms of

learning in the TRA are not clearly defined, there is no question

that beliefs, and thus intention, are meant to represent learning

from past experience alone; direct social influence has no role on

immediate behavior. In other related theory, however, there is

precedent to treat social influence separately from learning or

simply as the sole driver of behavior change. For example, the

social diffusion of health behavior is typically represented by a

influence coefficient [17,22] or a threshold rule [35]; learning is

not considered. In a similar vein, most agent-based models of

group norms do not incorporate learning, but capture the group

dynamics via social influence [36]. Recent work in personality

theory incorporates direct social influence as a primary driver of

behavior [28,37]. The current work casts health behavioral intention

as a function of both past-experience and direct social influence.

An important criterion for evaluating a new theoretical advance

is the extent to which it makes new, testable predictions.

Simulation III showed that our model could predict intention

under conditions in which the internal and external constraints

were closely aligned–i.e., the model’s past experience was very

similar to its current social context. However, what is the

prediction under other circumstances, especially those that are

crucial for health behavior applications? For example, in the

adolescent sexual behavior literature, key transition periods, such

as going from primary to secondary school, are very important.

How would the model predict intention as it evolves over key

developmental periods? Here, it is clear that the predictions for the

TRA and our model are different. If past experience and the

current social context are different, our model predicts that

intention will be a function of the two, via constraint satisfaction.

The TRA, however, does not make predictions that are based on

both past and current contexts and thus it does not make

predictions about such key developmental transitions beyond

suggesting that beliefs and thus intention will change over time.

In short, our model is capable of making specific predictions

that are based on the similarity of the current context and the past

social contexts–key constructs towards understanding develop-

mental transitions, and arguably other types of life-course changes

that might be related to health behavior (e.g., changes in contexts

that are generated by policy implementation). The central advance

in terms of testable predictions, then, is that our model points to

the need for understanding both the past and present social

contexts to predict changes in intention. This prediction is

amenable to experimental procedures or some type of prospective

observational studies that have a relatively high-temporal density

of measurement (e.g., using repeated measures of social contexts in

a social network).

Another type of prediction of our model concerns what is

learned from past social contexts. Our model is very specific with

respect to what it learns, as described above. The predictions in

this regard are equally specific–learning a belief structure will

capture the higher-order correlations among a set of beliefs. This is

a testable prediction, given that we know what the past social

context was. It might be a fruitful area of research in the health

behavior field to explore the belief structure–not just what beliefs

are salient but the strength of the relations among beliefs–because

this may be a strong driver of the dynamics of intention.

Finally, a general set of predictions come from the attitude

formation literature. Our model puts the TRA on an equal footing

with recent advances in attitude formation, and thus, offers a set of

predictions related to the extant theoretic controversies. For

example, the debates over implicit/explicit change [38], and

constructivist/static memory representations [23] come with

empirical predictions. These, we think, might find a way into

the TRA as extended by us.

Summary

In sum, our model advances the Theory of Reasoned Action in

meaningful ways that make testable predictions. First, it explicitly

models the development of a belief structure via learning from past

experience with others’ beliefs. Second, direct social influence–the

effect of others’ beliefs in the immediate social context–is captured

in the external constraints and is incorporated seamlessly with past

experience via constraint satisfaction. Third, intention is concep-

tualized as arising from a parsimonious and dynamic process

among belief valence banks and is predictive of empirical intention

measurements. Furthermore, by instantiating our theory in a

computational framework, we have opened the doors to multi-

agent models of population health that are based on plausible

psychological processes.
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